Negative blood oxygen level dependence in the rat: a model for investigating the role of suppression in neurovascular coupling.
نویسندگان
چکیده
Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.
منابع مشابه
The Bimodal Nature of Neurovascular Coupling
Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...
متن کاملAttenuation of Morphine Physical Dependence and Blood Levels of Cortisol by Central and Systemic Administration of Ramelteon in Rat
Background: Chronic administration of morphine cause physical dependence but the exact mechanism of this phenomenon remains unclear. The aim of this study is the assessment of systemic and intracerebroventricular (icv) administration of ramelteon (a melatonin receptor agonist) on morphine physical dependence. Methods: 88 adult male rats were divided into 2 major groups, namely “systematic” and ...
متن کاملنقش سرکوب فکر، عوامل فراشناختی و هیجانات منفی در پیش بینی اختلال وابستگی به مواد
Introduction: This study investigated the role of thought suppression, meta- cognitive factors, and negative emotions in predicting of substance dependency disorder. Method: Subjects were 70 patients with substance dependence disorder and 70 normal individuals (total 140). Substance dependants were selected of outpatient treatment centers and the normal sample was selected of the general popula...
متن کاملAus der Klinik für Neurologie der Medizinischen Fakultät Charité - Universitätsmedizin Berlin DISSERTATION Neurovascular coupling studied in a rat model during pathophysiological states: implications for functional brain imaging in patients
Functional magnetic resonance imaging (fMRI) with BOLD (blood oxygen leveldependent) has become a standard tool for psychological and neurological research. It relies on the local adaptation of blood flow to increased neuronal activity a phenomenon known as neurovascular coupling. The effects of pathophysiological conditions on neurovascular coupling and its corresponding BOLD signal are largel...
متن کاملInvestigating the Effects of Molecular Oxygen Impurity on the Quadrupole Coupling Constants of Boron Nitride Nanotubes: Computational Studies
Density functional theory (DFT) calculations have been performed to investigating the effects of themolecular oxygen impurity on the quadrupole coupling constant (Qcc) parameters of armchair and zigzagboron nitride nanotubes (BNNTs). Optimization processes have been performed to relax the original andimpure structures of the investigated BNNTs. Afterwards, the Qcc parameters have been evaluated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 12 شماره
صفحات -
تاریخ انتشار 2010